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The process of ‘quality control’ in the endoplasmic reticulum
(ER) involves a variety of mechanisms that collectively ensure
that only correctly folded, assembled and modified proteins are
transported along the secretory pathway. In contrast, non-
native proteins are retained and eventually targeted for
degradation. Recent work provides the first structural insights
into the process of glycoprotein folding in the ER involving the
lectin chaperones calnexin and calreticulin. Underlying
principles governing the choice of chaperone system engaged
by different proteins have also been discovered.
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Abbreviations
CRT calreticulin
CNX calnexin
ER endoplasmic reticulum
ERAD ER-associated degradation
PDI protein disulfide isomerase
3D three-dimensional
UPR unfolded protein response
UGGT UDP-glucose:glycoprotein glucosyltransferase

Introduction
The endoplasmic reticulum (ER) plays an essential role in
the folding and maturation of newly synthesized proteins in
the secretory pathway. It provides an environment opti-
mized for folding, oxidation and oligomeric assembly of
proteins translocated into the lumen or inserted into the
membrane. Folding in the ER is assisted by a large variety
of folding enzymes, molecular chaperones and folding sen-
sors [1]. Many of these associate with growing nascent
chains and continue to assist folding until a protein has
acquired its native structure. To ensure the fidelity of the
maturation process, exit from the ER is regulated by a strin-
gent quality control system that inhibits the secretion of
incompletely folded or misfolded proteins [2]. In addition to
securing extended exposure of proteins to the folding
machinery, quality control prevents deployment of poten-
tially malfunctioning proteins that could be detrimental to
the cell and the organism. For many proteins in the ER,
proper folding and maturation depends on co- and post-
translational modifications. Here we primarily focus on the
ER quality control system that is in place for proteins 
containing N-linked glycans.

Quality control mechanisms
ER quality control operates at several levels and by multi-
ple mechanisms [3]. At a general level, all proteins are

subject to conformation-based screening by members of
major molecular chaperone families. These chaperones
have the capacity to recognize properties common to non-
native proteins such as exposed hydrophobic areas. They
selectively associate with proteins that display such fea-
tures and in doing so promote folding and assembly. As
long as they are engaged in interactions with the substrate
proteins they also prevent export from the ER. 

Another level of quality control is specific for individual
protein species or protein families [3–5]. This level
includes specialized folding factors such as HSP47, which
only interacts with collagens [6]. It also includes special
escort proteins, such as the receptor associated protein
(RAP), which accompanies LDL (low density lipoprotein)
receptor family members from the ER to the Golgi com-
plex [7]. Moreover, there are also retention factors, such as
TAP (transporter associated with antigen processing) and
tapasin for MHC Class I antigens, that restrict transport to
a limited set of conformers of specific substrate proteins [8]. 

The quality control process involves a complex sorting sys-
tem that separates proteins according to their folding and
maturation status. The folding and assembly process is
thus functionally coupled to export by vesicular transport.
For certain proteins, transport relies on the exposure of
specific signal sequences. Such signals, like the DXE
sequences in the cytosolic domains of many membrane
proteins [9–11], may accelerate transport or, like RXR
sequences in ion channels, they may prevent premature
transport [12,13]. Selective retrieval of misfolded proteins
bound to chaperones from the intermediate compartment
or the cis-Golgi by retrograde transport to the ER has also
been reported [14]. 

Whereas folded proteins rapidly move via ER exit sites and
the intermediate compartment to the cis-Golgi and beyond,
persistently misfolded or unassembled proteins either
aggregate or become degraded. Degradation is important
because the folding process is far from quantitative even
under normal cellular growth conditions. In most cases,
ER-associated degradation (ERAD) of misfolded proteins
involves their retrotranslocation to the cytosol, ubiquitina-
tion and degradation by proteasomes [15–17]. Not
surprisingly, a number of diseases such as cystic fibrosis,
α1-antitrypsin deficiency and familial hypercholestero-
laemia are associated with ER retention and degradation of
folding-defective mutant proteins [4,18].

It is important to note that the accumulation of misfolded
proteins in the ER, especially observed under conditions
of stress, triggers activation of a wide range of genes encod-
ing for proteins of the secretory pathway. This is the
so-called unfolded protein response (UPR) [19–21].
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Several of the UPR-induced proteins are involved in pro-
tein folding and glycosylation in the ER, in ERAD, in lipid
metabolism and in vesicular transport [22••]. Thus, quality
control, ERAD and UPR are tightly coordinated processes
(recently reviewed in [23]).

The calnexin/calreticulin cycle
One of the most common modifications of proteins translo-
cated into the ER is the addition of N-linked glycans. For
glycoproteins, a particularly well studied ER quality con-
trol system is in place, involving two homologous lectins,
calnexin (CNX) and calreticulin (CRT) (Figure 1). The
process of N-linked glycosylation occurs through the trans-
fer of a triglucosylated, branched core oligosaccharide
(Glc3Man9GlcNAc2) to the nascent polypeptide chain as it
enters the ER lumen. Soon after transfer, trimming of the
core oligosaccharide by the successive action of ER 
glucosidases I and II to the monoglucosylated form,
Glc1Man9GlcNAc2, allows the glycopolypeptide to interact
with CRT and CNX. Being lectins they specifically 
interact with glycoproteins, but only if these have
monoglucosylated N-glycans [24]. Interaction with CNX
and CRT exposes the folding glycoprotein to the associat-
ed co-chaperone, ERp57, a thiol oxidoreductase of the
protein disulfide isomerase (PDI) family [25].

The association between substrate glycoprotein and lectin
is terminated by glucosidase II, which removes the
remaining glucose from the glycan. If, at this point, the 
glycoprotein has reached its native conformation, it is no
longer retained in the ER and can be transported to the
Golgi complex. If not, re-addition of a glucose to the
N-linked glycan occurs by the action of the UDP-
glucose:glycoprotein glucosyltransferase (UGGT), a lume-
nal enzyme that acts as a folding sensor [26•]. The
glycoprotein is thereby ‘tagged’ for renewed interaction
with CRT and CNX. The possibility of multiple rounds of

interaction with CRT and CNX is thus ensured. Overall,
CRT and CNX together with glucosidase II and UGGT
cooperate to increase the folding efficiency, to prevent pre-
mature oligomeric assembly and to prevent the export of
misfolded glycoproteins from the ER. The main features
of the CNX/CRT cycle are now well established, and a
thorough review has recently been published [26•]. Below
we address some detailed aspects of the cycle and discuss
unresolved questions. 

Chaperone selection in the endoplasmic
reticulum
In addition to CNX and CRT, the ER contains a large col-
lection of other molecular chaperones and folding factors
with different properties and functions [27]. Each newly
synthesized protein makes use of only a few of the available
chaperones. What are the parameters that determine which
chaperones a protein will engage and in which order? 

Recent work shows that for glycoproteins the choice of
chaperone depends, in part, on the position of the glycans
in the sequence [28•]. Growing nascent chains that have
N-linked glycans within the first ~50 residues from the
amino terminus preferentially interact with CRT and
CNX. In contrast, glycoproteins in which the glycans occur
later in the sequence first interact with BiP, an abundant
ER chaperone of the Hsp70 family that binds to hydropho-
bic peptide sequences, and later during post-translational
folding with CRT and CNX. 

With respect to CRT and CNX, it is clear that despite their
sequence similarity and identical oligosaccharide specifici-
ty in vitro [29–31], these two lectins exhibit only partially
overlapping substrate specificities in vivo [32–34].
Moreover, when they bind to the same protein, they have
in some cases been shown to interact with different gly-
cans [35]. At the molecular level, the main differences are
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Figure 1

Schematic representation of calnexin (CNX)
and calreticulin (CRT). (a) CNX is a type 1
membrane protein of 570 residues, whereas
CRT is a soluble, lumenal protein of 400
residues. The transmembrane domain (TMD) of
CNX is depicted in black. Regions A, B and C
show 50–55% sequence identity [63]. The
central P-domain contains two sequence repeat
types, designated 1 and 2, each repeated four
times in CNX and three times in CRT. (b) A
cartoon of the CRT P-domain NMR structure is
shown (reproduced with permission from
[36•• ]). Type 1 repeats are indicated in yellow
and type 2 repeats in white. The three β-sheets
and an α-helical turn are drawn as ribbons.
Residues of three hydrophobic clusters are
drawn as stick models.
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that the extended P-domain arm in CRT (Figure 1) is
shorter than the corresponding arm in CNX [36••] and that
CRT is a soluble, lumenal protein, whereas CNX is a
type I membrane protein of the ER membrane. As previ-
ously suggested [32,33,35], the latter difference clearly
plays a role in substrate selection. Analyzing the substrates
bound to a soluble, anchor-free mutant of CNX and a
membrane-bound version of CRT, Danilczyk and cowork-
ers [37] recently observed that the substrate specificities of
the two chaperones were essentially inverted.

ERp57-catalyzed disulfide bond formation 
The oxidizing environment and the presence of several
different thiol oxidoreductases allow formation of disulfide
bonds in the ER. One of the oxidoreductases, ERp57,
functions as a ‘co-chaperone’ with CRT and CNX [25,38•].
It most probably forms one-to-one complexes with both
CRT and CNX [38•] and has been shown to accelerate
oxidative refolding of monoglucosylated RNaseB in the
presence of CRT or CNX in vitro [39••]. The formation of
transient intermolecular disulfide bonds between ERp57
and newly synthesized glycoproteins have, moreover, been
observed in living cells [40••]. When the association of
CRT and CNX with glycoproteins was blocked, formation
of mixed disulfides with ERp57 was also inhibited, indi-
cating that lectin binding is a prerequisite for substrate
recognition by this thiol oxidoreductase. 

Substrate recognition by UDP-glucose:
glycoprotein glucosyltransferase
UGGT, the folding sensor in the CNX/CRT cycle, is a
large, soluble, lumenal enzyme [26•]. Its catalytic domain
displays a conserved 300 amino acid sequence at the 
carboxyl terminus of the protein with homology to glyco-
syltransferases of family 8 [41]. UDP-glucose, transported
into the ER lumen from the cytosol [42], is the glucose
donor, whereas the acceptors are glucose-free high 
mannose oligosaccharides attached to incompletely folded
glycoproteins. UGGT is present throughout the ER
including the transitional ER elements [43]. 

The exact mechanism by which UGGT distinguishes folded
from non-native glycoproteins is not known. Given the large
variety of unrelated glycoproteins that serve as substrates, it
is likely that the enzyme resembles classical molecular chap-
erones in that it recognizes features shared by incompletely
folded proteins. The enzyme is specific for glycoproteins as
it uses neither glycans nor short glycopeptides as substrates
[44]. Misfolded non-glycosylated proteins do not inhibit
UGGT [44,45]; however, a misfolded glycoprotein contain-
ing only the innermost GlcNAc unit of the oligosaccharide
can inhibit it [46]. Furthermore, although UGGT does not
recognize glycoproteins in a random coil conformation, it
efficiently reglucosylates a variety of partially folded con-
formers [47]. This is consistent with the finding that its
function in cells coincides with later stages of folding [48]. In
glycoproteins with multiple domains, UGGT selectively 
recognizes glycans in the misfolded domains [49].

Three main models can be proposed to explain how
UGGT recognizes its substrates. First, exposed hydropho-
bic peptide elements in the glycoprotein substrate could
be recognized by the enzyme. It has been shown that
UGGT binds to immobilized hydrophobic peptides and
that this interaction can be inhibited by denatured glyco-
proteins [46]. Second, recognition could involve the
innermost GlcNAc unit of the oligosaccharide. In folded
proteins this sugar interacts with neighboring amino acid
residues, an interaction which may be lost upon denatura-
tion [26•]. Finally, the enzyme may recognize the dynamic
properties of the polypeptide moiety. In other words, it
may be sensitive to the mobility or deformability of the
protein to which the glycan is connected. 

UGGT studies have been hampered by the lack of recom-
binant enzyme, the tendency of substrates to aggregate
and the heterogeneity of substrate glycoforms. With the
recent expression of UGGT in insect cells and the use of
non-aggregating, homogenous substrates such as glycopep-
tides, yeast acid phosphatase and RNase B, more rigorous
analysis of this interesting and important enzyme should
be possible. 

Three dimensional structures of calreticulin
and calnexin
For several years, 3D structure determination of CRT and
CNX has been pursued by several groups. Now, as a first
step towards a more detailed understanding of their func-
tion at the molecular level, the NMR structure of the
CRT P-domain has been solved [36••,50]. In addition, the
crystal structure of a CNX ectodomain fragment, for
which crystallization conditions have previously been
reported [51], has recently been solved but not yet 
published [23].

The NMR structure of the CRT P-domain (residues
189–288) shows an extended hairpin fold comprising the
entire polypeptide chain with amino and carboxyl termini
in close spacial proximity ([36••]; Figure 1). This unusual
structure constitutes a new fold. It is stabilized by three
short anti-parallel β-sheets as well as by three small
hydrophobic clusters each involving two highly conserved
tryptophyl residues, one from each strand of the hairpin.
The three-fold repetition of both the β-sheets and the
hydrophobic clusters reflects the repetitive nature of the
P-domain sequence, which contains two sets of amino acid
sequences each repeated three times (Figure 1). The
topology and the elongated shape of the P-domain suggest
that it constitutes an extended, somewhat curved protru-
sion from the CRT core domain [36••]. This is in
agreement with the recent finding by gel filtration and
sedimentation analysis that full-length CRT is an elongat-
ed molecule [52•]. 

A brief mention of the unpublished ectodomain crystal
structure by Chevet and coworkers [23] describes the
CNX ectodomain as containing ‘a lectin domain, as well

ER quality control: towards an understanding at the molecular level Ellgaard and Helenius    433



as a distinct loop’, indicating a structure similar to CRT.
Taken together, a uniform picture of the 3D structure of
CRT and CNX is emerging, where the P-domain consti-
tutes a finger-like extension from the globular core
structure that is responsible for the interaction with the
oligosaccharide of the substrate glycoprotein. That the P-
domain does not contain the carbohydrate binding site is
consistent with the lack of structural homology with
known lectins and the experimental observation that the
P-domain alone does not bind to glycoproteins [53].

At present, we can only speculate about the structure of the
lectin domain. However, outside the P-domain, CNX and

CRT show weak sequence similarity to legume lectins such
as pea lectin, which in turn shows structural homology to
galectins and pentraxins [54]. These proteins are character-
ized by a β-sandwich structure containing two opposing
β-sheets each of six or seven β-strands. Secondary structure
prediction of CRT and CNX using the PHDsec algorithm
[55] shows that both proteins are, in fact, likely to contain 10
or 11 β-strands outside the P-domain region. Therefore, the
possibility exists that the CRT/CNX lectin domain is char-
acterized by a similar fold to legume lectins. However, in
contrast to the well characterized plant lectins, which are
multivalent, CRT binding to monoglucosylated IgG is
monovalent [56•]. Interestingly, ERGIC-53 and VIP36, two
mannose specific lectins, shuttling between the ER and the
Golgi complex also both show sequence similarity to the
leguminous lectins [57,58].

Structural insights into glycoprotein folding
With the oligosaccharide binding function of CRT and
CNX mapped to a distinct lectin domain, the functions of
the P-domain become all the more intriguing. A priori, the
P-domain could be a site for direct interaction with unfold-
ed proteins. Two recent papers describe in vitro
experiments that suggest such a function for CRT and
CNX [59•,60]. Both proteins were found to bind to unfold-
ed, non-glycosylated proteins but not to native conformers.
In addition, they suppressed thermal denaturation and
aggregation and kept substrates in a folding-competent
state. Generally, interactions between classical molecular
chaperones such as those belonging to the Hsp60, Hsp70
and Hsp90 families and their non-native substrates are
mediated by hydrophobic contacts. However, the highly
charged surface of the CRT P-domain [36••] provides no
obvious sites for protein–protein interactions of this sort.
Whether the results described in [59•,60] affect protein
folding in vivo remains to be seen. 

Although a role for the P-domain in binding to unfolded
protein cannot be ruled out, it seems likely that it partici-
pates in other protein–protein interactions. The topology
of the P-domain places the tip of the hairpin loop at a 
discrete distance from the lectin domain. Likewise, the
protein moiety of a bound glycoprotein substrate would
be placed at a distance from the lectin domain due to the
presence of the glycan. Thus, the tip of the hairpin loop
could constitute a protein-binding site, with the most
obvious ligand being the co-chaperone ERp57. The NMR
data show indications of slow conformational exchange in
the central region of the P-domain, suggesting a certain
degree of plasticity [36••]. This plasticity could endow the
bound ERp57 with some freedom of movement that
would allow it to adopt different positions in respect to the
glycoprotein substrates bound to the glycan-binding site
and thus allow access to cysteines at different positions.
The intrinsic flexibility of CRT was recently deduced
from its hydrodynamic properties and was suggested to be
of potential importance for the protein’s function as a 
molecular chaperone [52•]. 
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Figure 2

A model of CNX, CRT and ERp57 interacting with a growing
nascent chain (brown) of a glycoprotein in the ER. The growing
nascent chain of the glycoprotein is cotranslationally translocated
into the lumen of the ER through the translocon complex which
contains a large, lumenal protrusion [64]. Phosphorylation of the
cytosolic tail of CNX leads to increased association with the
ribosome [65]. CNX, CRT and ERp57 are known to interact co- and
post-translationally with glycoprotein chains in the ER of live cells.
Early association with CNX and CRT is possible because, after
addition of the core glycans by the oligosaccharyl tranferase enzyme,
two of the glucoses are rapidly trimmed to generate the
monoglucosylated form of the glycans (the glucose is represented by
the blue circles labeled ‘G’). The glycans bind to the lectin domains
of CNX and CRT. The P-domain, which forms a long, slightly curved
arm extending from the lectin domain, is likely to generate a partially
closed space within which folding of the glycopolypeptide can occur
in a protected environment. It is also possible, as shown here for
CRT, that the P-domains of CNX and CRT interact with ERp57
allowing this thiol oxidoreductase to interact optimally with cysteines
in the glycoprotein substrate and thereby promote proper formation
of disulfide bonds.
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Although speculative at present, an additional function of
the P-domain could be to act as a ‘diffusion barrier’ for gly-
coproteins upon dissociation from the glycan-binding site.
As pointed out recently, the relatively low affinity of CRT
for monoglucosylated IgG of ~105 M–1 implies rapid rounds
of association and dissociation [56•]. A steric constraint on
the diffusion of the glycoprotein away from the chaperone
would ensure a higher local glycan concentration in the
vicinity of the lectin domain and thereby facilitate renewed
association. A similar effect would be achieved with multi-
ple glycan chains, which are known to stabilize the
complexes [61]. These ideas have been incorporated into
the model shown in Figure 2 where CNX and CRT bind to
the N-linked glycans of the growing nascent chain through
the lectin domain. The P-domain of CRT, containing a
bound molecule of ERp57, wraps around the chain to cre-
ate a protective barrier around the folding chain and to
position ERp57 for disulfide oxidation. As already men-
tioned, CNX and CRT are known to interact concurrently
with influenza hemagglutinin and other proteins cotransla-
tionally and binding occurs to distinct sugars [35,62].

Conclusions
The quality control mechanisms in the ER ensure the struc-
tural integrity of proteins delivered to the organelles of the
secretory and endocytic pathways and the extracellular space.
Recent progress has provided a better understanding of oxida-
tive folding of glycoproteins through the cooperation of ERp57
and lectin chaperones CRT or CNX, of the basis for recogni-
tion of unfolded substrate glycoprotein by the UGGT, as well
as of the structure of CRT and CNX. Some of the ‘rules’ under-
lying chaperone selection have also been deduced. In this
context, it has to be kept in mind, however, that the chaperone
system is quite flexible, with chaperones able to substitute for
each other, cooperate in different ways and respond differently
to physiological changes and cellular stress.

With regards to glycoprotein folding in the ER, future work is
likely to focus on the interplay between the different compo-
nents of the CNX/CRT cycle at the molecular level.
Important unresolved questions include if and how confor-
mational changes occur upon binding of substrate
glycoprotein by CRT and CNX, how the co-chaperone
ERp57 is recruited by CRT and CNX, how it manages to
interact productively with the large number of different sub-
strates, and finally to what extent CRT and CNX are involved
in protein–protein interactions with unfolded proteins? 
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